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1.  Summary 
 

This research addresses the initial stages of the development of an enabling technology for DNA 

computing and other biological assay applications. This work combines mathematics, computer science 

and chemistry. It is focused on the construction of a biomolecular architecture designed to employ new 

algorithmic paradigms based on the massively parallel computational power of DNA hybridization.  The 

ultimate intent is to develop a computing basis to eventually overcome the exponential time complexity of 

many discrete math problems so that they can be solved in linear real time.  Many of these 

computationally hard (NP) problems are critical to logistics, scheduling and security.  In particular, we 

made an initial application of biomolecular computing methods to the identification of important patterns 

in data, i.e., data mining. Data mining has important applications to information security, assurance and 

superiority.   

 

In this research, we developed methods of generating large collections of single stranded DNA 

sequences called a DNA(n,d) code. DNA(n,d) codes serve as universal components for biomolecular 

computing.  DNA(n,d) codes are closed under reverse-complementation. The strands in a DNA(n,d) code 

have such binding specificity that a code strand will only hybridize with its reverse-complement and will 

not cross hybridize with any other code strand in the DNA(n,d) code.  Such collections of strands are 

crucial to the success of Adleman [1] style DNA computing [4], [15], [24].  The collections also have 

important applications in many other biological assays.  Some of the other applications are single 

nucleotide polymorphism (SNP) genotyping [9], gene expression profiling [5], DNA chip development 

[11], [22], [37], and self-assembly [41]. 

In this proposal, we think of the strand design problem as a mathematical coding theory problem 

and we use the insertion-deletion metric as our constraint. This approach has been previously suggested 

[2], [33]. It was initially implemented in [9] with excellent binding specificity.  We have dramatically 

improved the initial research in [9].   

Two codewords x and y are at insertion-deletion distance at least d+1 if and only if their longest 

common subsequence has length at most n-d-1.  This means that if up to d deletions (of sequence entries) 

are made in any codeword x, the resulting (and shorter) q-ary sequence could not have been obtained by 

deleting up to d entries in any other codeword y with y ≠ x . Since two 3’-5’  DNA sequences x, y of 

length n can form s bonds in a duplex only if x and the complement of y have a common subsequence of 

length s the insertion-deletion metric is the only metric that can model this cross-hybridization bonding 

constraint  
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We wrote programs that generate very good random and pseudo-random DNA(n,d) (IDq (n,d)) 

codes. On a 2.3 ghtz Pentium PC, we generated a DNA(20,5) code of size 3038.  This is a ten-fold 

increase other previously published constructions. The reason for this improvement stems from the 

Markov chain approach we used to generate candidate code words.  

 Given two n-sequences x, y, all of our programs use a "folklore" dynamic programming 

algorithm to find the longest common subsequence (lcs(x,y) ) between x and y.  Our very first program 

used a (reverse-)complement cyclic code as an initial set from which to find a DNA(n,d) code as a 

subcode. However, we eventually realized that cyclic codes have too much symmetry to generate large-

size DNA subcodes.  The next step was based on generating uniformly distributed independent random n-

sequences, the volumes of the spheres of a fixed radius centered at many of these n-sequences is too large. 

We did not get the desired performance here. Our most recent programs generate candidate n-sequences x 

in the following way.  The value of x1 is selected from {a,c,g,t} with uniform probability.  Then, the 

remaining entries are generated by a stationary Markov chain given by transition matrix M k  with 

parameter k. Then, the remaining entries are generated by a stationary Markov chain given by transition 

matrix M k  with parameter k.  

 
                    a        c          g           t

M k =

a

c
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k −1 k−1 k−1
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FIGURE 1 

 

 These sequences have low volume spheres of the desired radius. However, the higher the k, the 

fewer the number of sequences generated.  Our programs take a dynamic heuristic approach.  These 

programs start a high value of k and then check all values of the permitted length of the longest common 

subsequence.  This continues for a set number of cycles over which no new codeword is added.  The next 

value of k is set by finding the next highest value of k for which a codeword can be added to the growing 

code. Here dichotomy is used. This heuristic has worked very well and is much better than the uniform 

codeword generation method. For example, by using our Markov chain heuristic, we can generate 

DNA(15,5) code of size 104.  Using the uniform distribution method, we could only generate DNA(15,5) 

code of size 14.  
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Our DNA(n,d) codes can be applied to biomolecular computing as described in [6]. Note that 

because of the properties of our DNA(n,d) code, we need only half as many distinct strands as were used 

in [6].  We show that a DNA(n,d) code can be used to encode and filter.  In [6], a strand either encodes or 

filters exclusively.  We have applied this approach to the data mining problem of the identification of 

maximal frequent sets. In short, using a DNA(n,d) code as universal components, an assembly process 

creates single stranded DNA molecules called DNA bit strings that store and retrieve information.  

For a given database, a library of DNA bit strings is past through (algorithmically constructed) 

filters. Then the  DNA bit strings that remain represent maximal frequent sets in the database.  

 

2. Introduction  
 

In [1], [6], [17], [26] it has been shown that the hybridization that occurs between a DNA strand 

and its Watson-Crick complement can be used to perform mathematical computation. The promise of 

DNA computing is that the massive parallelism of DNA hybridization reactions can be exploited to 

overcome the time complexity (via a silicon based computer) of an important class discrete mathematical 

problems so that they can be solved in real time.  However, to achieve the full potential of DNA 

computing, many technological hurdles need to be overcome. This work addresses this issue. 

In this research large collections of single stranded DNA sequences called a DNA(n,d) code are 

developed.  DNA(n,d) codes are closed under reverse-complementation. The strands in a DNA(n,d) code 

have such binding specificity that a code strand will only hybridize with its reverse-complement and will 

not cross hybridize with any other code strand in the DNA(n,d) code.  Such collections of strands are 

crucial to the success of Adleman [1] style DNA computing [4], [15], [24].  The collections also have 

important applications in many other biological assays [3], [4], [5], [8], [9], [11], [22], [37], [41]. 

Single strands of DNA are modeled by directed sequences of letters from the alphabet {A, C, G, 

T} where A, T and C, G are called complementary pairs. Two oppositely directed DNA sequences are 

capable of coalescing into a duplex.  Because an A (C) in one strand can only bind to a T (G) in the 

oppositely directed strand, the greatest energy of duplex formation is obtained when the two sequences 

are reverse-complements (a.k.a. Watson-Crick complements) of one another.  This annealing process is 

referred to as DNA hybridization.  For example, given the strand 3'GTATTGAT5' (directed 3' to 5'), the 

oppositely directed (5' to 3' ) strand 5'ATCAATAC3' is the reverse complement.  Henceforth, the terms 

complement and reverse-complement are synonymous. See FIGURE 2.  Since molecules can turn over in 

solution, our pictures are intended to capture this.  Because we are accustom to working with the bottom 

strand of a duplex, the numbering of our sequences is 3'-5' rather than the more customary 5'-3'. 
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FIGURE 2 

 

Hybridization assays offer the possibility of simultaneously processing trillions of bits of 

information.  In DNA hybridization assays for biomolecular computing, DNA strands can be used for 

multiple purposes.  They can be used to store, write, read and retrieve information.  Hybridization assays 

with DNA strands are also used to separate, manipulate, identify and address molecules in many other 

important experiments beyond biomolecular computing [3], [4], [5], [8], [9], [11], [22], [37], [41]. 

In DNA computing hybridization assays, each strand in the assay must hybridize much more 

strongly to its complement strand than to any other strand or any other complement strand. In such assays, 

DNA strands are synthesized and "labeled" or "fixed" DNA probes are allowed to hybridize with the 

synthesized DNA strands in a controlled and algorithmic way.  The resulting hybridized and "labeled" or 

"fixed" DNA molecules contain information (i.e., solutions to problems) that can in turn be "read" by 

further hybridization reactions or other means.  An example of this type of paradigm is the sticker method 

[33]. 

 

The advantage of this method is that it uses universal components that can be mass produced. We 

call the collection of universal components a DNA(n,d) code.  See Definition 2.  The main problem with 

this basic method is that unintended cross-hybridization is a main source of errors.  

 

Thus the problem is to avoid the formation of unintended duplexes in a DNA(n,d) code. In 

FIGURE 3, we give some examples of how this could happen. In FIGURE 3, the pairs (R, L) and (r, l) are 

complements.  The only intended duplexes are R:L and r:l. Base pairing can (possibly) occur between the 

red bases in the unintended duplexes listed in FIGURE 3. The other unintended duplexes not shown in 

FIGURE 3 are R:l, R:R, L:L, l:L and l:l. 
 

3’  G  T  A  T  T  G  A  T   5’ 3’  A  T  C A  A  T  A  C  5’
strand complement

3’   G  T  A  T  T  G  A  T   5’

strand:complement
  intended duplex
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FIGURE 3 

 

To deal with the problem of unintended duplexes, each intended duplex should be much more 

energetically stable than any possible unintended duplex.   

 

In this way, if the hybridization assays are conducted at a temperature above a certain threshold, 

then only intended duplexes can form. The main open question is how to best mathematically model this 

strand design problem. 

The design problem for a DNA(n,d) code presents a trade-off.  In order to maximize the amount 

of information that can be stored or processed in parallel, it is desirable to have as many strands as 

possible.  On the other hand, if too many strands are used, similar strands will entail cross-hybridization, 

reducing the accuracy of the assay. Thus the DNA(n,d) code must be constructed to adhere to some 

constraints   

 

This research improved known constructions of DNA(n,d) codes and demonstrated how to use 

them as universal components in DNA based computing.  

 

3’  G  T  A  T  T  G  A  T   5’

R  =  3’  G  T  A  T  T  G  A  T   5’ L =  3’  A  T  C  A  A  T  A  C  5’

r   =  3’   t   t   c   c   a   a   g   g  5’ l =  3’   c   c   t   t   g   g   a   a  5’

3’   t   t   c   c   a   a   g   g  5’

strands
corresponding
complements

unintended duplex  r:R unintended duplex  r:L

unintended duplex  r:r
3’   t   t   c   c   a   a   g   g  5’
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3.  Methods, Assumptions, Procedures 
 

3.1 Insertion-Deletion Codes 
 

In this work we think of the strand design problem as a mathematical coding theory problem and 

we use the insertion-deletion metric as our constraint.  

 

 While other "metric" constraints have been applied to this problem [7], the insertion-deletion 

metric is the only one that models constraining the absolute maximum number of possible cross-

hybridized (i.e., bad) base pairings. Also the insertion-deletion is the only metric that can be adapted to 

constraining the absolute maximum number of possible cross-hybridized (i.e., bad) hydrogen bounds. 

 

All lower-case Roman variables represent non-negative integers.  [n] denotes the set 

{1, 2,  ...,  n}.  A q-ary n-sequence x =(xi )  is sequence of length n with entries xi ∈{0,...,q −1} for each 

1 ≤ i ≤ n.  For applications to our strand design problem we have q = 4. 

 

Definition 1.  Given two q-ary n-sequences x and y, lcs(x,y)  is the maximum length of all subsequences 

common to both x and y.  The insertion-deletion (or Levenshtien) metric is denoted by ρ(x,y) where 

ρ(x,y) = n − lcs(x,y).  A collection C of q-ary n-sequences is called an IDq (n,d)code, if for any 

x, y ∈C , we have that ρ(x,y) ≥ d + 1.  Let idq (n,d)be the maximum size of an IDq (n,d) code. 

 

Two codewords x and y are at insertion-deletion distance at least d+1 if and only if their longest 

common subsequence has length at most n-d-1.  This means that if up to d deletions (of sequence entries) 

are made in any codeword x, the resulting (and shorter) q-ary sequence could not have been obtained by 

deleting up to d entries in any other codeword y with y ≠ x . For this reason IDq (n,d) codes can be 

thought of as d-deletion correcting codes1.   See Example 1. 

 

Example 1.  Consider the 4-ary sequences x, y of length 8 with x = 31011301 and y = 22113300.  Then 

ρ(x,y) = 4 because lcs(x,y)  = 4.  A common subsequence of length four is indicated by red entries. 

                                                 
1 Actually such a code can correct any combination of up to d deletions and\or insertions. Hence the name insertion-
deletion metric.   
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Note that by starting with x and deleting the blue entries, we have the common sequence 1130.  Then by 

inserting the entries 2, 2, 3, 0 in the appropriate places, we obtain y.   

There are a couple of basic formulas that form the basis for the theory of ID(n,d) codes.  Let x be 

a q-ary n-sequence.  Let Dt (x)  be the set of all q-ary (n-t)-sequences that can be obtained from x by t 

deletions.  Let I t (x) be the set of all q-ary (n+t)-sequences that can be obtained from x by t insertions.  

Let Vt (x)  be the set of all codewords with insertion-deletion distance at most t from x. Vt (x) is the 

insertion-deletion sphere of radius t and centered at x.  Let r(x) be the number of runs of x. A run is a 

maximum interval of x that consists of the same symbol, e.g., 111211000033 has five runs.  From [20], 

[23], [24], we have that:  r(x)− t
i( )

i=0

t

∑ ≤ Dt (x) ≤ r (x)+t −1
t

 
   

   and  | It (x) |= n+ t
i( )(q−1)i

i=0

t

∑ . 

These equations give information about bounds for IDq (n,d) code.  Suppose we have an 

IDq (n,d) code C.  Then for x, y ∈C , there is no common subsequence of length n-d.  Hence Dd (x) 

and Dd (y) are disjoint.  Therefore Dd (x)
x∈C
∑ ≤ qn−d .  Known upper bounds are essentially derived 

from this observation.  Asymptotic lower bounds have been obtained by standard random coding methods 

based on an ensemble generated by the uniform distribution for q-ary n-sequences [24]. What makes 

IDq (n,d) (and DNA(n,d) codes below) difficult to analyze can be observed by the following. Since 

lcs(x,y) ≥ n − t  if and only if y can be obtained from x by t deletions followed by t insertions, it follows 

that 
  

Vt (x) = I t (z)
z∈Dt (x)
U .   

This indicates the fact that there are spheres of the same radius but different volumes. From the 

above observation about insertion-deletion spheres, good codes should have codewords x with Vt (x) of 

smaller volume.  This requires codewords x with fewer runs.  One way to create such codewords is to use 

a stationary Markov Chain.  

In comparison to the plethora of codes for the Hamming metric, there are a few known 

constructions of non-random IDq (n,d) codes and almost all are for IDq (n,1) codes. See [19], [25], [36], 

[40], [42].  One non-random method that we have discovered (and have applied in some of our programs 

described in Section 4) can be explained as follows.  Given an IDq (n,d) code C of size N an 

IDq (nk, kd + k −1)  code C(k) of size N can be obtained by replacing every n-sequence in C with the nk-

sequence achieved by repeating each entry k times. For example if k = 3, then 0112033 would be replaced 

by 000111111222000333333.  
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The reason for choosing the insertion-deletion metric for strand design is that two 3’-5’  DNA 

sequences x, y of length n can form s bonds in a duplex only if x and the complement of y have a 

common subsequence of length s.  No other metric constraint has this property. 

This is exhibited in Figure 3.  The unintended duplex r:R can form four base pairings because l 

has the subsequence ttga and R has the exact same subsequence TTGA.  Recall that l is the complement 

of r. Note these sequences are not necessarily contiguous. For example, the subsequence ttga of l is not 

contiguous. With this in mind, we have the following definition.  

 

3.2 DNA(n,d) Codes 
 

Definition 2 [15]  A DNA(n,d) code is a collection of DNA strands (3’-5’) of length n that satisfy the 

following constraints: 

 

1. The complement of every strand in the collection is also in the collection (i.e., the code is closed under 

complementation.) 

2. No strand is equal to its complement. 

3. The longest common subsequence between any two strands in the collection is at most n-d-1. 

 

Ideally, strands from an DNA(n,d) code form n bonds with their complement strands in the 

formation of  intended hybridized duplexes, while at most n-d-1 bonds occur in any unintended cross-

hybridized duplexes. Thus if d is large enough and the reactions are carried out at a temperature that 

exceeds the n-d-1 bonding threshold, but is below the n bonding threshold, then cross-hybridization will 

be essentially eliminated. 

If we set 0 = A, 1 = T, 2 = C, and 3 = G, then DNA(n,d) codes are a subclass of ID4 (n,d) codes 

because an ID4 (n,d) only satisfies condition 3 of a DNA(n,d) code. The reasons for conditions 1 and 2 

can be observed in FIGURES 6-9, and are discussed Section 5.  Using this numeric-letter identification, 

the reverse complement of a 4-ary sequence is defined exactly as the Watson-Crick complement.  Using 

this definition, an ID4 (n,d) that also satisfies condition 1 of a DNA(n,d) is called a RC(n, d) code. 

Asymptotic lower bounds have been established for RC(n,d) codes have been obtained.  Let 

rc(n,d) be the maximum size of a RC(n,d) code. Clearly rc(n,d) ≤ id4(n,d).  Then as n → ∞  we have  

rc(n,d) ≥ (d!)2 q
(q−1)2

 
 

 
 

d
q n

n 2d (1 + ο(1)).   (1) 
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As was the case for IDq (n,d) codes, this lower bound by was achieved by standard random 

coding arguments based on an ensemble of codewords generated by using the uniform distribution of the 

q-ary symbols.   

Let C be a DNA(n,d) of size 2N.  We can partition C into two halves, each half free of the 

complement of any other strand in the given half.  Let R(C) ={r1, ...,rN} denote one of these halves and 

let L(C) = {l1, ...,lN} (where ri  is the complement of li ) denote the other half.  An example of a 

DNA(8,3) partition in this way is given below in TABLE 1. Note, for any x, y in this DNA(8,3) we have 

lcs(x,y)  = 4.  In TABLE 1 all sequences are given 3'-5'. 

In applications the subsets R(C) and L(C) have complementary functions.  For example, the 

strands in R(C) can function as molecular tags or sites to write on a molecule while the  strands in L(C) 

can function as probes, extractors or site blockers. In Section 5, we describe how the strands in a 

DNA(n,d) code can be used to construct a biomolecular computing architecture.  In that architecture, each 

R(C) and L(C) each have two distinct functions at different points in the procedure.  At one point of the 

procedure, ri  is used to write "1" and li  is used to write "0."  At another point, ri  is used to read "0" and 

li  is used to read "1."  In FIGURES 6-9,  we also indicate why the insertion-deletion distance needs to be 

obtained for codewords between and inside each of the halves.  

  R(C)              L(C) 

r1= aattttaa r7= atgcgttg l1= ttaaaatt l7 = caacgcat 

r2 = taaccccg r8= cccccccc l2 = cggggtta l8= gggggggg 

r3= ttccaagg r9= aaaaaaaa l3= ccttggaa l9 = tttttttt 

r4 = ggccaatt r10 = ggtttccc l4 = aattggcc l10= gggaaacc 

r5= gctacggg r11= cccctttt l5 = cccgtagc l11= aaaagggg 

r6= gtattgat r12 = ttttgggg l6 = atcaatac l12= cccctttt 

TABLE 1 
 

4.  Results, Discussion 

4.1 DNA(n,d) Code Generation Programs 
 

We have programs that generate very good random and pseudo-random DNA(n,d) (IDq (n,d)) 

codes.  One reason that we believe we can construct better bounds for IDq (n,d) and DNA(n,d) codes 

with a Markov chain approach stems from the great improvement that we achieved by using a Markov 
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chain to generate codewords for our randomly constructed codes.  In [9], a random  ID(20,5) of size 1024 

was generated by a using a uniform distribution.  This code was pruned to a DNA(20,5) code of size 16 

by experimental and computational methods. 

 

On a 2.3 ghtz Pentium PC, we generated a DNA(20,5) code of size 3038! 

 

 Given two n-sequences x, y, all of our programs use a "folklore" dynamic programming 

algorithm to find the lcs(x,y) .  This is essentially described in [10]. The complexity of this subroutine is 

O(n2) .  In [10], an improvement of the "folklore" algorithm is given and we plan to incorporate this in 

our future programs.  

 

 Our very first program used a (reverse-)complement cyclic code as an initial set from which to 

find a DNA(n,d) code as a subcode. However, we eventually realized that cyclic codes have too much 

symmetry to generate large-size DNA subcodes. 

 The next step was based on generating uniformly distributed independent random n-sequences, 

but from the discussion in Section 4, one can understand that the volumes of the spheres of a fixed radius 

centered at many of these n-sequences is too large. We did not get the desired performance here.  

 

 Our most recent programs generate candidate n-sequences x in the following way.  The value of 

x1 is selected from {a,c,g,t} with uniform probability.  Then, the remaining entries are generated by a 

stationary Markov chain given by transition matrix M k  with parameter k.  
                    a        c          g           t

M k =

a

c

g

t

k−3
k

k −1 k−1 k−1

k−1 k−3
k

k−1 k−1

k−1 k −1 k−3
k

k−1

k−1 k −1 k−1 k−3
k

 

 

 
 
 

 

 

 
 
 

 

 

FIGURE 4 

 The average number2 of runs in the codewords of this ensemble is 3n
k

.  Thus higher values of k 

give sequences with fewer runs.  These sequences have low volume spheres of the desired radius.  

                                                 
2 (q −1)k

n
 for q ≠4 . 



 

  

 

11

However, the higher the k, the fewer the number of sequences generated. At present, our programs take a 

dynamic heuristic approach.  These programs start a high value of k and then check all values of the 

permitted length of the longest common subsequence.  This continues for a set number of cycles over 

which no new codeword is added.  The next value of k is set by finding the next highest value of k for 

which a codeword can be added to the growing code. Here dichotomy is used. This heuristic has worked 

very well and is much better than the uniform codeword generation method. For example, by using our 

Markov chain heuristic, we can generate DNA(15,5) code of size 104.  This code is exhibited in TABLE 

2 (only R(C) is given, L(C) follows.) Using the uniform distribution method, we could only generate 

DNA(15,5) code of size 14.  

             R(C) 

ccccccccccccccc aaccccggattttta cctttaaggatttcc tttgggccccagcct 

ttttttttttttttt ttggggaaaaacccc cttttcccgtaactc aagtaaggtagcagg 

aaaaaaggggggggc ttttggaaaaatttt ggtttcccttcggtt gccgtgggctggaac 

gggcccttaaaaaaa ggggaaaaaggttgg ttccaaaattaaacc tctgcaaacaagcag 

ttttttccccggggg ggaatttggggttcc aaagggggctttacg gtcctttgtcgcctg 

ggggggaaatttttt ttcggggggcccggg aaacaactttgggca tgcctcccgcgattg 

aaaaaaaaccctttt ccaaaaaccccgaaa ttagtttgaagcttg acaatcgtatcccga 

tttacccccccaaaa cataattttggccgg gggtggattcaagca attactggctggcat 

aaaggggcccccccc acccctttaacctgg cccattcggccaaca agaattccatacctt 

cccccctttggggcc acaaaaaaggtcaat acaggccagtccggg ttggtcgtctttcac 

tttaaaaaaaaaggg cgggccagggtttaa ttccaaggggtccaa gacgacccgataggt 

aaagggccggaaaat cccccaaaaggccct ggactttagtcaatt tttgatgggactacg 

aatcccccccagggt gttccgttttaaaat cgtcggttaggcccc gagcggtcggtactt 

TABLE 2 

5. Conclusions 
 

5.1 DNA Computing with DNA(n,d) Codes 
 

To give an example of how DNA(n,d) codes can be applied to biomolecular computing, we 

discuss algorithm and architecture in [6].  In [6] a total of 80 distinct strands (40 library encoding, 40 

filtering) were used to solve a 20 variable SAT problem.  We show that a DNA(n,d) of size can be used to 
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encode and filter.  In [6], a strand either encodes or filters exclusively.  Note, there are other architectures 

that can be constructed using DNA(n,d) codes ,e.g., the variants of the sticker method [33]. 

 

Note that because of the (assumed) properties of our DNA(n,d) code, we need only half as many 

distinct strands as were used in [6]. 

 

A DNA bit string of length N is a DNA molecule (single long strand) that consists of N distinct 

non-overlapping substrands X1,X2,...,X N   and N-1 identical DNA molecules S that are located between 

any two consecutive X i,Xi+1in the DNA bit string3.  Suppose we have a DNA(n,d) code C of size 2N 

partitioned into R(C) and L(C). A Lipton encoding [26] can be used to construct a DNA library of 2N  

distinct DNA bit strings X1SX2S...X n−1SXn were X i = ri  or X i = li  for ri ∈R(C), li ∈L(C).  If we 

think of ri = 1and li = 0 , then we have a library of DNA molecules that encode all binary sequences of 

length N.  Using a subcode {r1, ...,r7}∪ {l1, ..., l7} of the above DNA(8,3) code in TABLE 1, the encoding 

of the sequence 1000101 is given in FIGURE 5. 

 

FIGURE 5 

 
As indicated above, we identify DNA bit strings and binary sequences. For I ⊆ [N] and (ei )i∈I  a 

binary sequence, let K be the following a subset of binary N-sequences defined as 

K = {(bi) : bi = ei for some i ∈I}.  K is the set of all binary sequences that satisfy the disjunctive 

clause K' over N Boolean terms, each of which is a variable xi (if ei =1) or its negation ~ xi ( if ei = 0 .)  

The main "computing" idea in [6] is an iteration of the following: Given a subset T of DNA bit strings 

and a set K defined above, the subset T ∩ K can be extracted from the set T by hybridization. See 

Example 2. 

 

Example 2. Suppose T is the set of all 27 DNA bits stings formed by using our DNA(8,3) subcode of 

size 14 given above. Suppose K1 = {(bi) : b1 = 1 or b3 = 0 or b4 =1 or b5 = 0} and 

K 2 ={(bi ) : b2 = 1 or b3 = 1 or b7 = 0}.   If we use the DNA bit string representation, then 

K1 = {(bi) : b1 = r1 or b3 = l3 or b4 = r4 or b5 = l5} and K 2 ={(bi ) : b2 = r2 or b3 = r3 or b7 = l7}.  

                                                 
3 To improve performance a strands of synthetic bases (e.g., iso-G) could be used as separator sequences. 

3’ aattttaa S cggggtta  S  ccttggaa  S  aattggcc  S  gctacggg  S atcaatac  S  atgcgttg  5’ 
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Two corresponding "filters" F1and F2  are constructed. F1 consists of the probe strands l1 ,r3 , l4 ,r5 

affixed to a gel. Note that these are the complement stands to those that appear in K1.  Thus F1 could be 

called the complement filter of K1.  Similarly, F2  consists of the strands l2 ,  l3,  r7 affixed to a gel.  

When T is passed through F1, only the strands in K1 hybridize with the probes affixed in F1 and remain 

in the gel.  The strands that pass through the filter F1 are discarded. The strands that remain in the F1 gel 

are exactly T ∩ K1 .  These strands can be "washed" from the filter F1 and recovered.  Then these 

recovered strands are passed through filter F2 .  Only the strands in T ∩ K1  and in K 2 hybridize with 

probes in F2 . What passes through is discarded. The strands that remain in the F2  gel are exactly 

T ∩ K1 ∩ K2 . Thus the strands T ∩ K1 ∩ K2  in the F2  gel are all binary sequences that satisfy the 

conjunction K1 ∧ K2of the clauses K1 and K2 .   

Given the above descriptions, the general SAT problem can be thought of as:  Given disjunctive 

clauses K1 ,  K2,..., Kp , then is 
  

Ki
i=1

p

I ≠ ∅ ?  By constructing the corresponding complement filters 

F1 ,  F2,..., Fp and iterating the above process, the answer is "yes" if and only if there are any strands in 

Fp .  

All of the above analysis is contingent on avoiding all of the possible cross-hybridization 

situations that a DNA(n,d) code intends to avoid. We now give some examples of potential cross-

hybridizations. For the filter to work, we need correct reads. See FIGURE 6. 

FIGURE 6 

Incorrect reads are avoided by ensuring that codewords inside of L(C) (R(C)) have the proper 

insertion-deletion distance. In FIGURE 7, only four base pairings can form in a "bad read."  Here c5 is  

FIGURE 7 

 

3’ aattttaa  S cggggtta   S  ccttggaa   S  aattggcc   S  gctacggg   S atcaatac   S  a tg cg ttg   5’ 
incorrect read

incorrect DNA bit string is affixed

correct  read
3’ aattttaa S cggggtta  S  ccttggaa  S  aattggcc  Sgctacggg  S atcaatac  S  atgcgttg  5’ 

a correct DNA bit string is affixed
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"incorrectly reading" r7.  Four bonds can form because lcs(r5,r7) = 4 . The common subsequence 

between r5=  gctacgg and r7=atgcgttg is tcgg. 

Inter-DNA bit string interactions are prevented by ensuring that the insertion-deletion distance 

inside of R(C) (L(C)) or between R(C) and L(C) is sufficient. In top pair in FIGURE 8, only four bonds 

can form between the two strands at the indicated positions because lcs(l2,r5) = 4 .  The common 

subsequence between l2 = cggggtta and r5= gctacggg" in Figure 8 is gggg.  Similarly ensuring the proper 

insertion-deletion distance prevents intra-DNA (hairpin) interactions. See FIGURE 9. 

 

                                                                  FIGURE 8 

 

                                                                        FIGURE 9 

 

5.2 DNA Computing and Data Mining 
 

We now discuss a problem that is of particular interest to us.  Let [2N] denote the power set of 

[N].  Suppose we have DNA(n,d) code C of size 2N partitioned into R(C) and L(C).  

3’ xxx S xxx  S  xxx  S  xxx  S  xxx  S xxx  S  atgcgttg  5’ 

DNA bit string interactions

These DNA bit strings could be prevented from being affixed

3’ xxx S taaccccg S  xxx  S  xxx  S  xxx  S xxx  S  xxx  5’ 

aattttaa
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Problem 1.  Let P1, P2,  ...,  Pm  be fixed subsets of [N].   

 

a.  Find all S ⊂ [N] with S ⊄ Pi  for all i with 1 ≤ i ≤ m . 

b.  Find all T ⊂ [N] with Pi ⊄ T  for all i with 1 ≤ i ≤ m . 

 

Both of these problems are related and are simplified forms of the general SAT problem. They 

can be solved by the method described above.  (These are simplifications because no negations appear in 

the clauses.)  

 

There is one important difference. In the SAT problem, only one solution needs to be found. Here 

all solutions are required. 

 

  Let (b i )  be a binary n-sequence. As above, let K i = {(bj) : bj = 1 for some j ∉Pi}. Clearly all 

S ⊄ Pi  for all i with 1 ≤ i ≤ m  is the set of all S with incidence vector in 
 

Ki
i=1

m

I .  In the DNA bit string 

representation, Ki = {(bj) : bj = rj for some j∉Pi}.  The associated filter Fi  consists of {lj : j ∉Pi} .  If 

a set S of DNA bit strings of length N is passed through Fi , then only the bit strings in K i remain in the 

gel of Fi . Starting with all possible DNA bit strings and iterating the filter process outlined above m 

times, we arrive at Fm .  Fm  contains all the DNA bit string representations of the solutions to Problem 1a.  

Problem 1b can transformed into Problem 1a because Pi ⊄ T  if and only if [N] − T ⊄ [N] − Pi .  

The most straightforward application of the above problem is in the identification of independent 

sets in a graph (or hypergraph).  In Problem 1b, if one takes all the edges of a simple graph G as the 

collection {Pi} , then the set of all T is the collection of independent sets in G. 

Problem 1a can be applied to the identification of maximal frequent sets in a data base [12], [18], 

[27], [28], [29], [30].  The reason that this is of interest to us is because the identification of the maximal 

frequent sets is the main computational bottleneck in the data mining of association rules. 

The relationship between data mining and Problem 1 is this. If the sets {Pi}  are selected properly, 

the subsets S will be candidates for maximal frequent sets.  See [12], [18], [27], [28], [29], [30] and 

Section 12 here.  The application of DNA computing is to apply to Problem 1 an algorithm like that 

described in Section 7.   
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FIGURE 10 

 

The relationship between data mining and Problem 1 is this. If the sets {Pi}  are selected properly 

the subsets S will be candidates for maximal frequent sets.  See [12], [18], [27], [28], [29], [30].  The 

application of DNA computing is to apply an algorithm like that described in Section 7 to Problem 1.   

 

Then the resulting collection of DNA library strands that remain in the final filter will code for 

maximal frequent sets.  What is envisioned is that patterns in data are being transformed into molecules. 

See FIGURE 10.  If we can read the molecules, then that we have found the patterns.. 
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